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A non-linear controlled dynamical system (NCDS), describing the dynamics of a wide class of non-linear mechanical and
electromechanical systems, is considered. A technique is proposed for synthesizing control laws with linear feedback according
to state, which describe the stabilization of programmed motions of such systems. A non-singular linear transformation of the
state space is constructed, bringing the initial NCDS in deviations (from its programmed motion and programmed control) to
a certain NCDS of a special form, which is convenient for analysing and synthesizing control laws governing the motion of
the system. A NCDS of canonical form is separated out from the initial NCDS in deviations. The aforementioned non-singular
linear transformation of coordinates of the state space and the method of Lyapunov functions are used to synthesize control
laws with linear state feedback, which guarantee global symptotic stability of an equilibrium position of a NCDS of canonical
form and asymptotic stability in the large of a NCDS of special form and of the initial NCDS in deviations. Estimates are given
for the domain of asymptotic stability in the large of the equilibrium positions of a NCDS of special form, of the initial NCDS
in deviations, and of programmed motions of the initial NCDS, closed by the synthesized stabilizing controls. © 2005 Elsevier
Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

The dynamics of a wide class of mechanical and electromechanical systems is described by a system of
non-linear ordinary differential equations in Cauchy form, of the type

2 = F(Z’ u, t)v Z(to) = ZO’ tZtOZO (1.1)

where zy, z = z(t) are the n-dimensional state vectors of the system at the initial and current instants
of time, u is an n-dimensional vector of controls and F is an n-dimensional vector-valued function which,
for an admissible control, satisfies existence and uniqueness conditions for the solvability of system (1.1)
and describes the properties of the controlled object.

Suppose we are given (or have constructed) a programmed motion (PM)

7, = 2,(1), t21 (L.2)
which is a particular solution of system (1.1) for some admissible programmed control
u, = u,(t), t24 (1.3)

and initial condition z,y = z,(¢). The PM z,(¢) will be called the unperturbed motion, and any other
motion z(¢) of system (1.1) governed by admissible controls will be called a perturbed (real) motion.
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The quantities
e=2-2, e€,=Uu-u, (1.4)

and perturbations, that is, deviations of the real (perturbed) motion z and the control u from their
programmed values. They satisfy the following ordinary differential equations in deviations

é = Fe(e, eu, t), e(to) = eo, t2 to (1.5)

where

Fe,e,t) = Flet+z, e, +u,t)-F(z,u,t) (1.6)

and F,(0, 0, ¢) = 0. It follows from formula (1.6) that under the control e, = 0 system (1.5), (1.6) has
the motion e = 0.

The transformations (1.4) reduce the problem of investigating the motions z(f) of a non-linear
controlled dynamical system (NCDS) (1.1) in the neighbourhood of any selected PM z,,(¢) to the problem
of investigating the solutions e = e(f) of a NCDS in deviations (1.5), (1.6) in the neighbourhood of its
equilibrium position e = 0. In what follows, therefore, the main restrictions and propositions will be
formulated for NCDS in deviations (1.5), (1.6).

For a wide class of mechanical and electromechanical systems (such as electromechanical manipu-
lator robots; see Appendix, Section 5), the structure of the equations of the NCDS in deviations (1.5),
(1.6) is such that

e = col(ey, ...,e.), n=mr 1.7)
F(e, €, 1) = COl(F,(¢5 1), ... F, ,_1(e', 1), F. (€], €, 1) (1.8)

Fo (€' 1) = g,1(e', 1) + Popa(De,

k+1

Fa(é"*,0) = g, )+ Pogaer(e ey, k=271 1.9)

5 -1

Fer(er’ e,p t) = ger(er’ t) + POI’, r+ l(er ’ t)eu
in which e, = col(eyy, ... , e4) and e = col(ey, ... , ;) are m- and mk-dimensional column vectors, the
m-dimensional vector-valued functions F,; (k = 1, ..., r) (1.9) are continuous and sufficiently many

times continuously differentiable with respect to their arguments, and the m x m matrix-valued functions
Poe ko +1 (k =1, ..., r) may be represented in the form

Pora(t) = A{(DBy; Pogrei(e ™0 = Ae* 0B, k=2,..,r (1.10)
where

A1) = AF(H)>0, 121,

AL = AT >0, Ve R, k2, k=2,.,r (1)
A (k =1, ..., r) are symmetric positive-definite m X m matrix-valued functions such that
|A (1) Skyqy, t21g
lage" 0| kg, Ve T e MY, k2ay k=2,.,r (1.12)
0 <ky <o (k=1,...,r) are certain constants; analogous estimates hold for the partial derivatives of

their elements — scalar functions ag; (k = 1, ..., r;4,j = 1, ..., m) — with respect to their arguments; the
asterisk denotes transposition and By (k = 1, ... , r) are non-singular constant m x m matrices, that is,

rankB, =m, k=1,...,r (1.13)
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R™*=1 s real Euclidean m(k — 1)-space; throughout, |4 | = (_Zl _21a§> f and |a| = (@} + ... + aD)?
i=1j=

are the moduli (Euclidean norms) of a real matrix 4 = ||a;||;=1, ... =1, .. ,m of order n x m and a
real vector a = col(ay, ..., a,) € R".

Each of the m-vector-valued functions g, (k = 1, ... , ) satisfies the following estimates for all possible
values of its arguments

2 m
gek(ek, t)l Skgzkllekl + kgekzlekl , Ve e R k, t21t, (1.14)
where kg (j = 1, 2) are certain constants such that
0<kypy;<oo, k=1,..,7 O0<kyp = ¥ kypya<oo (1.15)
k=1
In what follows, the control law
u=u(zt) =u,()+T(z-z,), t2¢ (1.16)
where
Fo = “FOI’ ey FOI’” (1.17)

(T is the constant m x n partitioned matrix of the gains of the feedback loops; Ty, (k = 1, ... , 7) are
the m x m blocks), for the initial NCDS (1.1), (1.6)—(1.15) and the control law

e, = e,(e) =Tye (1.18)

for the initial NCDS is deviations (1.5)—(1.15) have the structure of linear feedback control laws
depending on the states z and e, respectively.

We shall say that a PM z,(f) (1.2) of system (1.1), (1.6)—(1.15) is stabilizable by a control law u
(1.15)—(1.17) with linear feedgack depending on the state vector z(¢) (or, respectively, that the equilibrium
position e = 0 of system (1.5)—(1.15) is stabilizable by a control law e, (1.18), (1.17) with linear feedback
depending on the state vector e(?), if the control law guarantees asymptotic stability in the large of the
PM z,(t) of system (1.1), (1.6)~(1.15) (or, respectively, of the equilibrium position e = 0) of system
(1.5)—(1.15)) according to Definition 5 presented below in Section 3.

In what follows, we shall formulate criteria for the equilibrium position e = 0 of the initial NCDS in
deviations (1.15)—(1.15) to be stabilizable by a control law e, (1.18), (1.17) with linear feedback depending
on the state e (resp., for a PM z, (1.2) of the initial NCDS (1.1), (1.6)—(1.15) to be stabilizable by a
control law u (1.16), (1.17) with linear feedback depending on the state z). Estimates will be given for
the domain of asymptotic stability in the large of the equilibrium position e = 0 of the closed NCDS
in deviations (1.5)-(1.15), (1.18), (1.17) (resp., of the PM z, (1.2) of the closed-loop NCDS (1.1),
(1.6)—(1.17)).

2. REDUCTION OF THE INITIAL NCDS IN DEVIATIONS TO AN NCDS
OF SPECIAL FORM

For a further consideration of the NCDS in deviations (1.5)—(1.15), we will write it in the form of the
system

é = Po(e 2 t)e+Qole” ™! e, +8,(e 1), elty) = ep 121, 2.1)
where

Po(e"z, t)e + Qole’~ 1, t)e,+g.(e,t)=F, (e e,t) (2.2)
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F, is the vector-valued function (1.6)~(1.15);

(0] I—)ou(t) o ..... (0]
0O 0 Ppse,t) O .. 0
Poe' 0y =| ¢ : (2.3)

S . 0
0 o0 o . 0 Py €700
0o 0 e .. O 0

_ 0

Oole”™ 'ty = || _ i (2.4)

POr,r+ l(e > t)

are partitioned matrix functions of orders n X n and n x m, respectively, I_’Ok, r+1k=1,..,r) are
m x m blocks of the form (1.10)-(1.13), O is the zero matrix of appropriate dimensionality, and

g.e, 1) = col(gel(el, 1), gez(ez, ), ... ge,(e', 1) (2.5)

is an n-vector-valued function for which, thanks to relations (1.14) and (1.15), we have the estimate

lg.(e, D] S T |gua(e 0] Skplel +kppolel’, Vee R, t21 (2.6)
k=1
where
keei = O kgerp J = 1,25 0Sky, <o, 0<ky,<eo 2.7
k=1

We apply to system (2.1)—(2.7) a non-singular linear transformation of coordinates of the state space,
of the form

e, = Se(e= S_lex = Re,) (2.8)
where

e, = col(e,, ..., e,,) (2.9)

ey = cOl(exy, ---  €xim) are n- and m- dimensional vectors, S and R are non-singular constant partitioned-
triangular » x n matrices of the form

1, 0 .. O
Sy I, o .. . 0

Sr—l,r—ZSr—Z,r—3"'SZI Sr—l,r—ZSr—-Z,r—3"'532 Sr—l,r—-2 Im o
Sr,r—lsr-—l,r—Z"'SZI Sr,r-lsr—l,r—Z"‘S32 Sr,r—-l Im

= ISullii-1. .. (2.10)




500 Yu. K. Zotov

Skl=0’ k=1,...,r—1; l=k+1,...,r

(%)
boad
=~

1]

My

[
—

S TR Sk,k-lsk-l,l = sk,k—lsk—l,k—Z*"SHl,l
k=3..,r =1 .,k-2

Sk+1,6 (k=1,...,r-1) are m x m blocks of the form indicated below in Lemma 1;

1, O .. .. 0
S, I, O .. .. O
Res'c| O Sul. O .. O
0 .. 0-8_1,, I, O
0 .. .. 0 -S,.1,

and I, the m x m identity matrix.

Then the initial NCDS is deviations (2.1)—(2.7) is transformed to a NCDS of special form

. -2 r-1
é, = P,(e; e, +Q(e, e, +g,..(e,t), ety =e, 24
where
-2 -1
Pie " e +Q,(e. e, +g,(e,t)=F,(e,e,t) = SF(Re,e,t)

F, is the vector-valued function (1.6)—(1.15); and

r-2, r-2

P(e. % 1) = SPy(6" *(el ?), DR =
P(8) Pyu(n) 0 )
1 1
P, () Piple,, t) Piys(e,t) O 0]
. 2
Piss(e,, 1)
. - r-3 :
T Pl,r-2,r-—1(ex » 1) o
-2 -2
. . . Pl,r—l,r—l(e: , 1) Pl,r—l,r(e: ) 1)
) ) 2 -2 -2
Plrl(t) P1r2(ei’ t) P1r3(ex’ t) Pl,r,r—l(e.: ’ t) Plrr(e.: ’t)

1Pudle,i=1,....r
is a partitioned » x n matrix-valued function whose m x m blocks have the form

Py =P (1) = —Popa(1)Sy1,  Pryp=Piyp(t) = Popa(t)

PlkIEPIkl(t) = 'Sk1F012(t)S21v k=2 ..r

k-1, k-1

k-1 =
Pl iis1=Piisrley 51 = Porrs1(0 (e, )1), k=2,..,r-1

k-1 = k-2, k-2
Pi=Pya(t)e, 1) = S 1Pok-1,(0 “(e; 7), 1) -

~Pokis1 (TN DS e k=21

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Piu=0, k=1,..,r-2; I =k+2,..,r

1-2

1~ = 1-2
=Pe 0 = S Poio1i(6 e, ) -

o
-
x~
<

i

—SuPo1+1(6 €N, 08,1 k=3, I=2,. k-1

-2 5 -2, r-2
PlrrEPIrr(e; ’t) = Sr,r—IPO,’—L’(or (ex )’ t)

ek = col(e,q, ... , ex); throughout,
GkEGk(eI;) = col(0,(e,), Oz(ess €x2) -0 Okles 41y €xp)) =
= H.Re, = He = €' = col(ey, ..., ¢;) (2.17)

and (01(ey1) = €1 = €1, Okley k-1,€xk) = —Sk k-1€x,k-1 + Imeuk = €, k = 2, ..., 1) is an mk-vector-valued
function, where Hy, = ||I;,, O|| is a constant (km) x n partitioned matrix; everywhere,

Poi2(c’(el), 1) = Poia(t) (2.18)

is an m x m block; when relations (2.4), (2.10) and (2.11) are taken into account, Q is a partitioned
matrix of the form

r—1

0,(e)™", 1) = SDo(c” (e} 1) = Qo(6” (e, D) (2.19)
8ex(€pt) = Sg(Re,, 1) (2.20)

is an n-vector-valued function which, when relations (2.5)—(2.7) and (2.8)—(2.12) are taken into account,
satisfies the estimate

|8eclx | = IS8.(Re,, )| <ISl|g.(Re,, )] < ISI(k, 1| Re ] +kyp|Re DS

S kgerled +hensled’s Vere R, 121 (2.21)

where kg,,; (j = 1, 2) are certain constants such that

0Skypyy = SRy <00, 0<kyy = ISRk, < o0 2.22)

3. DEFINITIONS AND AUXILIARY LEMMA ON THE SYMPTOTIC
STABILITY IN THE LARGE OF THE EQUILIBRIUM POSITION OF
A NON-LINEAR DYNAMICAL SYSTEM

Let us consider a non-linear dynamical system
é = f(e,t)+glet), e(ty) = e, t2¢ 3.1

where e, e = e(t) =e(t; ey, tp) are the n-dimensional state vectors of the system at the initial and current
instants of time and f and g are n-vector-valued functions with

f(0,1) = g(0,1)=0, Ig(e,t)ISkglleI+kgzlelz, Vee R", Vt2t,

3.2
0<ky <o, 0<k,<oo -2)

where kg; are certain constants.
It is assumed that a solution of the Cauchy problem for system (3.1), (3.2) exists and is unique.
We will give some definitions [1-6] that will be used below to investigate the behaviour of the solution

of system (3.1), (3.2).
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Definition 1[1; 2, p. 9; 3, pp. 66, 67]. The equilibrium position e = 0 of system (3.1), (3.2) is said to
be Lyapunov-stable if, for any number € > 0 and any #; > 0, a number & = 8(¢, ;) > 0 exists such that if

leo| < 3=3(g, 5)
then

le(t; eq, tp)] <€ forall t21,
Otherwise, the equilibrium position e = 0 of system (3.1), (3.2) is unstable.

Definition 2 [1; 3, p. 68]. The equilibrium position e = 0 of system (3.1), (3.2) is said to be asymptotically
stable as t — +eo if it is Lyapunov-stable and, for any #; > 0, a positive number A = A(tg) < 8(g, £;) exists
such that, if

le| <A
then

le(t; eq, tg)] =0 as t— +oo (3.3)
Definition 3 [3, p. 68; 4, p. 69]. The domain
Q, = {ege R": |eg| <A=A(tp)}

(for fixed #p) such that condition (3.3) is satisfied is called the domain of attraction or domain of
asymptotic stability (DAS) of the equilibrium position e = 0 of system (3.1), (3.2).

Definition 4 [3, p. 68; 4, p. 69]. If the equilibrium position e = 0 of system (3.1), (3.2) is asymptotically
stable as t — +<o and all the solutions e = e(f) (0 <y <t < o) have property (3.3), that is,

= oo

then the equilibrium position e = 0 is said to be globally asymptotically stable, that is, system (3.1),
(3.2) is said to be globally asymptotically stable if
Q, =R
Definition 5 [5, p. 29]. Let py > 0 be a given position number. The equilibrium position e = 0 of

system (3.1), (3.2) is said to be asymptotically stable in the large if it is Lyapunov-stable and condition
(3.3) holds for any initial conditions e, in the domain

QO = {eoe Rn: |80| <p0}

Below, when studying the behaviour of solutions of various NCDSs, we will use the method of
Lyapunov functions [1-6], which enables us not only to establish asymptotic stability, but also to obtain
estimates of the DAS of the unperturbed motions of the systems (in particular, when solving problems
of asymptotic stability in the large, when the domain of initial perturbations cannot be considered to
be as small as desired). For example, according to the method [2, p. 21; 5, pp. 29, 30; 6, p. 149], if a
real continuously differentiable scale function v(e, ¢) is positive-definite [3, p. 235], v(0, t) = 0 and along
a non-trivial solution e(t) of system (3.1), (3.2) the function

dv(e(r), 1) + ov(e(n), )
ot de(t)

b = b(e(2), 1) = (fle,1) +g(e, 1)) = w(e(r), 1) = w(e, 1)

is negative-definite [3, p. 236] in a bounded domain

Q, = {e€ R": v(e, 1) <pg, 21} (3.4)
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(where pg > 01is a real number), then the equilibrium position e = 0 of system (3.1), (3.2) is asymptotically
stable in the large and the domain Qg is an estimate of its DAS or domain of attraction [2, p. 21]. This
means that all trajectories e(?; e, £;) of system (3.1), (3.2) that begin at ¢ = £, in the domain €, (3.4)
will tend to the origin (¢ = 0) as t — oo, that is,

le(t; eg 1g)] =0 as t—eo, e(ty) = eg€ Qp
Auxiliary Lemma. Let us assume that a real continuously differentiable scalar function v(e, ¢) and

real numbers €,; > 0 (i = 1,2, 3), 09 > 0, 0 < vy < 1 exist such that
(1) eyle| <vle, ) <eylel,ee R, t2t;v(0,1) = 0;
0 d
)] LLCD) < &y, LECD) 20, |le| #0. 121
oe oe

(3) in estimate (3.2) for the vector-valued function g(e, ) the coefficients ky; (j = 1, 2) satisfy the
inequalities

0<k,y <(1-V)OgEy €z, 0<Vo<1; O<ky <o
(4) the derivative with respect to time ¢ of the function v(e(t), ¢) along trajectories of the system
é = f(e 1), e(ty) = ¢y 121
evaluated along a non-trivial solution e(¢) = e(t; e, t,) of the system, satisfies the estimate

d _ov(e(t), 1) , dv(e(1),t)
g e = —5 ==+ de(1)

fle(®), 1) S—o v(e(t), t), t21,

Then
(1) the equilibrium position e = 0 of system (3.1), (3.2) is asymptotically stable in the large;
(2) the DAS of the equilibrium position e = 0 of system (3.1), (3.2) is the set

n. . €41 €41
Q, = {e€ R™ v(e,1)<py, 121} P = k—[(l—vo)aog———kgl]>0 (3.5)
g2

v3

(3) a non-trivial solution e(f) of system (3.1), (3.2) satisfies the estimate

Yokt~ 10) -1
le()l <Boe ™ le(to)], e(to) = eo€ Qo 21855 By = En€uis Yo = Vol
where Q is the set (3.5).

Proof. Taking conditions 1-4 of the lemma into account, let us evaluate the derivative with respect to ¢ of the
function v = v(e(t), £) along trajectories of system (3.1), (3.2). This gives

_dv, dv

D= o+ - ov _
b= 45 (flen+glens a0v+1$’|g(8,,)|5 g0+

2 -1 -1
+ &30k, lel + kpplel™) <= voagV — (1= vg)og + €3y V(K +Kgr€y V) <
-2 -1
S—V0o U+ V{E€;38,1k,, U+ [€38 1 kgy — (1 = V)0l } S -Voapv =
= —YoU, e(ty) = eg€ Qy, 2ty 0<vo<l, 7¥o = Vol 3.6)
where Qy is the set (3.5).

Hence, by condition 1 of the lemma, we deduce the validity of parts 1 and 2.
The estimate (3.6) and condition 1 of the lemma imply the inequality

ot

v, t)<e _"’)v(eo, o), e(ty) = ege Qp, 121, 3.7

where € is the set (3.5). It follows from inequality (3.7) and the estimates for the function v(e, £) in condition 1
of the lemma that the third part of the lemma also holds. The lemma is proved.
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4. CRITERIA FOR THE STABILIZABILITY OF NCDS
1. We will first consider the behaviour of a solution e,(f) of the NCDS

é, = Piel i e, + 01l e, elty) = e 21, (4.1)
(where e, is the state vector (2.8) of the system, P; and Q, are the matrix-valued functions (2.15)—(2.18)
and (2.19)), closed by a control law e, (1.18), (1.17) represented, with due note of (2.8)—(2.12), in the
form
e, = Tye = e,,=TyRe, = Toe, (4.2)
where Iy is a constant m x n matrix consisting of m x m blocks:
To = TR = ||Tos ..., Tol (4.3)
Tot = Top=TokatSkare k=1,..,r=1; Ty, (4.4)
and the equations of the transients (in the above closed-loop system) have the form
é. = Pel e, ety =eq 121, (4.5)
Here
Pt = Piei 2+ Qe DTy = (el % 1)+ Py(el 1) (4.6)

is an n X n matrix-valued function, where P, is the matrix-valued function (2.15)—(2.18) and, when
relations (2.19), (2.4) and (2.17) are taken into account

Pyey 1) = 0y, 0T = 0o(6” ™ ()", )Ty =
(0]
RTC A Ol W)) o 4.7

is an n X n partitioned matrix function.

Lemma 1. Assume that the following conditions hold:
(1) the matrix I'y (4.3), (4.4) has m x m blocks:

I:Ok = FOk_FO,k+lsk+1,k =0, k=1,..,r-1; ror = 1-‘orESr+1,r (48)

where S; .1, (k =1, ...,r) are m x m blocks, and the m xm blocks T’y (k =1, ..., r) of the m X n
matrix I'y (1.17) may be represented in the form

Lot = Tors1Seark = Srat,SrrotoSearo k=1,..,r-1

= (4.9)
I“OrESr+ t,r = I--‘Or
so that the matrix Ty (4.3), (4.4) has the form
To =0Tl =)0, (4.10)

(2) Sk +1,k(k=1,...,r) are non-singular constant /n x m blocks representable in the form

-1
Seark = B Ysuero k=107 (4.11)
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where By (k = 1, ..., r) are the matrices defined by Eqs (1.10) and (1.13); s x + 1,k (k = 1, ..., r) are
certain real numbers satisfying the inequalities

’Ys,k+l,k>0’ k= 1,...,r—'1; YS,’+l,r<0

(IYs,k+1,k| =Yske1,k> 0. k=1,..,r-1; |Ys,r+1,r| =-Ys,re1,,>0)

o 4.12)
Ys21> Yoszu = [2MAY (r-1)
k-1
[Ys.ke1,dd > Yos, ke 1,6 = [ZL(Ak)]_l[ﬁckk+(r—k)+ Zaak,} k=2..,r
=1
where
0<A(A,) = mininfA(A,(r))
i 21
' k-1 (4.13)

0<MA) =min  inf  AALS* (T i=1,.m

k-1 N
It le R*Dm 124

o= o(e¥) is the vector-valued function (2.17); A;(A,) are the eigenvalues of the matrix-valued functions
A, k=1, ...,r) (1.11), (1.2), respectively

" k=2, is1..m

MAD=MA(D), A(AY =A(A(c"”
Bowo tgu (k =2, ..., 1,1 =1, ...,k —1) are non-negative real numbers:

sup| G (7)], 522(82, 1 =Gx(t)

121,

BGZZ

sup I(_}kk(ef_z, t)l, k=3,...,r

ele RO r2y,

ﬁGkk

= k-2 = k-2, k-2
Gule, 1) = Sp k—1Pok-1,{0 “(e, "))+

+08k k- 1Po k160" 2y D%, Grlem =G k=2,..,r (4.14)

Po12(°(e)), 1) = Poia(1)

it

2
O fgglG“(t)f , k=2,..,r
=%

Ggu =  sup  |Gue L, k=31 1=2.,k-1

-1 -1
& le RV 2y

Then the equilibrium position e, = 0 of the NCDS (4.1), (2.8), (2.15)—~(2.19) closed by the control
law e, (4.2)—(4.14), (4.8)—(4.14) with linear feedback depending on the state e, is stabilizable, so that
the following propositions hold:

(1) the equilibrium position e, = 0 of the transient equations (4.5)—(4.14), (1.10)—(1.13) (in the above
closed-loop system) are globally asymptotically Lyapunov-stable;

(2) the solution e,(¢) of this system satisfies the estimate

~0g(t - to)‘

le ()| <e e(to)l, 21, (4.15)
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where o is the positive real number

. 1
0.0 = ml:naexk, k = 1, R 1 aexl = i[aG“—(r—l)]>0

k-1 (4.16)

1
Coxr = i[aGkk—(r—k)_ Zale:|>0’ k = 2, ween I
=1

Ogi = 2¥suMA) >0, gy = ZL(Ak)I'Ys,k+1,k|“‘BGkk>0, k=2 ..,r

Proof. We first note that in the transient equations (4.5)-(4.7), where P is the matrix-valued function (4.6) in
which P, is given by (2.15)—(1.18), the matrix-valued function P, (4.7) (taking into account that the blocks I'y; and
Tow (k =1, ..., r), respectively, of the matric Ty (4.3), (4.4), (4.8), (4.10) and I'y (1.17), (4.9) satisty relations (4.8)
and (4.9) [of the first condition of the lemma]) has the form

Py(e)” ' 1) = diag(O, P, (e ), Py (el 1) = Py, pui(67 (€L, DT, 4.17)
We now consider the Lyapunov function
V(e,) = |’ = efe, (4.18)

and evaluate the derivative with respect to time ¢ of the function V(e,(¢)) (4.18) by virtue of the transient equations
(4.5)-(4.14), (1.10)—(1.13), along the non-trivial solution e,(¢) of the system, taking into account that the blocks
Se+1,% (k= 1, ..., r) satisfy relations (4.11)—(4.14) (of the second condition of the lemma). We finally obtain

V(e () = W(e(r), 1), t=t, (4.19)
where
W(e,t) = e*G(e) ™, t)e, (4.20)
is a quadratic form in which (taking relations (4.6), (2.15)-(2.18) and (4.17) into account)
Gle; 0 = G, = P+ PR 0 = |Gl o0, 4.21)
is a symmetric n x n matrix-valued function in which Gy (k,/ = 1, ..., r) are m x m blocks:
Gy =G\ (1) = GE(1) =Gy (en x) = Py (1) + PE(1) = —275,A,(2)
Gu=Gue ™\ = GE(: ™ = P n+ X ) =

k-1

- = k-2
= 24" Y O s kel + Ol D, k=2,

G (1) = GE(D), G(1) = Pyy(n), k=3,..,r Gp() = GH(t)
X i . (4.22)
Gy (1) = Py () + Pp(8),  Gyle, 1) = Pyyle, 1)

Gty = GXel\n; k=4,..,r 1=2,..,k=2

Grre1@ D) = Py (™ + PE L e

Gk+l,k(ei_lvt) = G:“l(ei_l,t); k=2 ..,r-1
where

Py(t) = Pyy(n) = -7’012(0321 = -[A[()B,]8; = —[Al(t)BlllB;l'Ysz]] = —A;()Ysy
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k-1 k-1
Pule, ,1) = Pule, ) =
k-2 5 k~1, k-1
(€, ) —Porixs1(0 (& )OSy p =
k-1, k-1 -1
(e, 1 OBIB, Ys k41,4 =

(™", O|Ys k41,4

= k-2
= S k- 1Pok-1,4(0

= S ko1 Poko 1,6 e - [A(o
= S e 1Pok- 1,60 27, ) - A(a" !
s ket,d = Vs,ke1,6>0 k=2,..,7=1 (4.23)
P& 1) = P (el 0+ Py (1) =

€0+ Po a0 eS8, =
=58, , (Por A0 He, ), 0+ A6 (€ ), DBIIB s 4 1,] =

r—2(e;— 2), t) _Ar(or—l

3 r-2
= Sr,r—-IPO,r—ly'(c

r-1

= Sr,r-lpo,r— 1,,-(0 (er ) t)'YS,r+l,r|

"st""'l,’l = _YS,r+l,r>09 YS,r+l,r<0

0" = o*(eX) is the mk-vector-valued function (2.17), the m x m blocks Gy, (k = 2, ..., r) are defined by the formulae
in (4.14), and by expressions (4.8) and (4.9)

fo’ =Ty = sr+1,r

We will estimate the quadratic form W(e,, t) (4.20)—(4.23).
To that end, we first observe that, since the matrix-valued functions 4, (k = 1, ..., r) are positive-definite and
estimates (1.11) are valid, we have the estimates

MA|e, P S efA (e, SAA e’ Ve21,

2 % k-1, k~1 T 2 (4.24)
MA ey’ e A (i), Neg <R (AY|en
Ve';'le R*Dm Vit k=2,...,r
where MA4y) > 0 (k = 1, ..., r) are the real numbers (4.13) and
0<A(A;) = maxsup),(A,(f))
itz
0<A(Ay) = max sup A(AS* Y, ) (4.25)
it e R p2yy
i=1,...m k=2 ..,r
We then estimate the quadratic forms
_ %k k ® k-1
Wil t) = €G(Neyy, Wyle,t) = e Gule, W te,, k=2,..,r (4.26)
Taking relations (4.22) and (4.14) into account, we obtain
W, (e, 1) = eXG (Ne,; = -2e¥75,,A <- 2
ney €1Gnl(tey €1 YsnA (e S—0gy ey
Wileh 1) = ehGuler ! e,y =
(4.27)

k-1, k-1 — k-2
= efl-24(0" " (e, ) OYs, ks 1,4l + Graley ™ Dleg <

2

<-[2MAD s ko 1.4l - [Cinlel ™2 D] len* S —0gulenl®s k=2, .7

where oy (kK = 1, ..., r) are the positive real numbers (4.16), (4.12)—(4.14).
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Now, taking relations (4.22), (4.23), (4.26) and (4.27) into account and using the inequalities
-1 -1 2
2¢5Gyy (e, v')exlsz[le;';c”sz(ex r’)ll|ex1| <led "‘aaulexklz
k=2,...,r, I=1,..,k-1

where o,y are the non-negative real numbers defined by the last two formulae of (4.14), we estimate the quadratic
form Wie,, t) (4.20)-(3.24)

r rork-1 4
-1 _ -
W(e,t) = efG(e,” ,De, = Y eXG (e De+ 2 > {2 e Guler !, t)ex,:' <

k=1 k=2LI=1

r r k-1
<y ekakk(e:_ B Neg+ Y, { Y [|ex1|2 + alelekllzl} =

k=1 k=2%V=1

r k-1
= e;"l[G,l(t) +(r-1)1, ]e,, + z e;';{Gkk(e,’:_ ', H+ [(r—k) + E aGk,]Im}exks
k=2 I=1

r k-1
Sl-agy, +(r- 1)]]e“]2+ 2 [— Ogue+(r—k)+ z ack,][exk{z =
k=2 I=1

,
= 2 Y O ulenl’ S2000e* = “200V(e (1), 121, (4.28)
k=1

where oy > 0(k =1, ..., r), ag > 0 are the real numbers from (4.16), (4.11)—(4.14). It follows from relations
(4.19) and (4.28) that

V(e (1) = W(e (1), ) S-200V(e (1)), 21, (4.29)
from which we find
V(ex(t)) < V(ex(to))exp[-zao(t—to)], t2t0
Hence, again using relations (4.18), we obtain
e (D" < |ex(t) exp[-2a0(r - 19)], 121,

Consequently, the equilibrium position e, = 0 of the transient equations — system (4.5)~(4.14), (1.10)-(1.13) - is
globally asymptotically Lyapunov-stable, and the solution e(f) satisfies the estimate

le ()] < expl-0g(r - tg)]le ()], 2%y (4.30)

that is, the equilibrium position e, = 0 of the NCDS (4.1), (2.15)~(2.19), closed by the control law e, (4.2)-(4.4),
(4.8)-(4.14), with linear feedback depending on the state ¢, is stabilizable. This completes the proof of Lemma 1.

2. Let us consider the behaviour of the solution e(¢) of the NCDS of special form (2.13)—(2.22)
é, = P e, +0(e) e+ g, (ent), elty) = ey 121,
(where ¢, is the state vector (2.8) of the system, P, and Q) are the matrix-valued functions (2.15)-(2.18)
and (2.19), and g,, is the vector-valued function (2.2)-(2.22)), closed by a control law e, (1.18), (1.17)
represented, if relations (2.8)—(2.12) are taken into account, in the form (4.2)-(4.4)
e, = Tpge = e, =T Re, = Toe, (To=TyR)

and transient equations (in the above closed-loop system) of the form

é, = P(e;_l, e, +g,.(e.1), elty) = e, 121 (4.31)
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where P is then n x n matrix-valued function (4.6), (2.15)—(2.18), (4.7) and g, is the vector-valued function
(2.20)-(2.22).

Lemma 2. Assume that the conditions of Lemma 1 are satisfied and that in estimate (2.21) for the
vector-valued function g, (2.20) the coefficients k,; (j = 1, 2) (2.22) are such that

0<ky; = ISRy <(1-vg)0tg, O<Vy<1
(4.32)

0<k || IR| K gy < oo

gex2 =

where kg1, ker and oy are the constants defined by (2.7), (1.14), (1.15) and (4.16), (4.11)—(4.14).

Then the NCDS of special form (2.13)-(2.22), (4.32), closed by a control law e, (4.2)-(4.4), (4.8)—(4.14),
with linear feedback depending on the state e,, is stabilizable, so that the following propositions hold
for the solution e,(¢) of the transient equation (in the above closed-loop NCDS) - the system (4.31),
(4.6), (2.15)-(2.18), (4.7), (2.20)~(2.22), (4.32):

(1) the equilibrium position e, = 0 of system (4.31), (4.6), (2.15)—(2.18), (4.7), (2.20)-(2.22), (4.32)
is asymptotically stable in the large;

(2) the DAS of the equilibrium position e, = 0 of system (4.31), (4.6), (2.15)—(21.8), (4.7),
(2.20)-(2.22), (4.32) is the set

Q.0 = {e,e R": v(e,) = e, <Py} (4.33)
where
Pexo = kg_’;xZ[(l _vo)ao_kgexl] >0, O0<vy<1 (4.34)

oy being the constant defined by relations (4.16), (4.11)-(4.14);
(3) anon-trivial solution e,(f) of system (4.31), (4.6), (2.15)—(2.18), (4.7), (2.20)~(2.22), (4.32) satisfies
the limit

e ()| Se_YO(’—IO)lex(to)f, ex(tg) € Qoo 121, Yo = Vol (4.35)

where Q, is the set (4.33), (4.34).

Proof. We shall show that the assumptions of the Auxiliary Lemma hold for system (4.31), (4.6), (2.15)-(2.18),
(4.7), (2.20)—(2.22), (4.32), written in the form

é, = fle,t)+g.(e,1), elty) =e, (21 (4.36)
where
flepy=P(e, ! e, (437)

and g, is the vector-valued function (2.20)—(2.22), (4.32).
Consider the Lyapunov function

vey) = e = (Ve = (eXey)'” (4.38)

where (e,) is the function (4.18).
Conditions 1 and 2 of the Auxiliary Lemma hold for the function v(e,) (4.38), (4.18), where

e, =1, i=123 (4.39)

i

Because of relations (4.39) and (4.32), the coefficients k,q,; (j = 1, 2) (2.22) in the estimate (2.21) for the vector-
valued function g, (2.20) satisfy the estimate in condition 3 of the Auxiliary Lemma, where 0y is the constant defined
by relations (4.16), (4.11)—(4.14),

2 .
kot = Kpopr = ISIIRlkge1 20, kyy = kgppy = ISRk, y>0, €, =1, i=1,2,3

where kg1 2 0, k,; > 0 are the constants defined by relations (2.7), (1.14) and (1.15).
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Since the conditions of Lemma 1 hold, it follows that the derivative with respect to ¢ of the function V{e,(f))
(4.18) along trajectories of system (4.5)-(4.7), (2.15)-(2.18), written in the form

€, = flent), elty) = ey 124 (4.40)

where f is the vector-valued function (4.37), satisfy relations (4.19), (4.20), (4.28) and (4.29)
Vie (1)) = W(e (1) <-200V(e, (1)), 121, (4.41)
where W(e,(?)) is the function (4.20)—(4.23) and oy is the positive number defined in relations (4.16), (4.11)—(4.14).

Taking the estimate (4.41) into account, let us evaluate the derivative with respect to ¢ of the function v(e,(r))
(4.38), (4.18) along trajectories of system (4.40), (4.37). We obtain

V(e (1)) 1

2(V(e,‘(t)))”2 - 21)(ex(t))v(ex(t)) =

e (1) = [(V(e )] =

= —I_Mf(e t)<————1—2(1 V(e (t)) =
To(e, (1) de, V= TTuge () M0
= _2——0(:x(t))2a0[v(e,(t))]z = —apUe (1), 121 (4.42)

and hence the fourth condition of the Auxiliary Lemma is holds.

Thus, system (4.36), (4.37), (2.20)—~(2.22), (4.23) satisfies all the conditions of Auxiliary Lemma and consequently
the conclusions of the lemma are true; but by (4.38) and (4.18), those conclusions are identical with the assertions
of Lemma 2 for system (4.31), (4.6), (2.15)—(2.18), (4.7), (2.20)—(2.22), (4.32), written as the system (4.36), (4.37),
(2.20)—(2.22), (4.32), Lemma 2 is proved.

3. We now consider the behaviour of a solution e(¢) of a NCDS in canonical form
é = Pole’ "%, e+ 0ole’ ' e, e(ty) = e 121 (4.43)

(where Py and Q are the matrix-valued functions (2.3) and (2.4)), closed by the control law e, (1.18),
(1.17)

e, = Tge
with linear feedback depending on the state e, and transient equations (in the above closed-loop system)
é = Po(erhl, Ne, e(ty) = ¢, 121 (4.44)
where Py (¢" 7, t) is the n x n matrix-valued function
Pye” ') = Po(e "% 1)+ Dole” ™!, )Ty = Pyi(e” % 1)+ Poy(e’ ™' 1) (4.45)
The n x n partitioned matrix-valued functions have the form

Py % 1) = Po(e’ 2 1) (4.46)

- - 0
Py(e ™1 = Qoe’ 0Ty = | _ . (4.47)
POr,r+l(e s t)ro

Theorem 1. Assume that the conditions of Lemma 1 hold.

Then an NCDS of canonical form (4.43), (2.3), (2.4), closed by the control law e, (1.18), (1.17),
(4.8)—(4.14), with linear feedback depending on the state e, is stabilizable, so that a solution e(t) of the
transient equations (in the above closed-loop NCDS) - the system (4.44)—(4.47), (1.17), (4.9)—(4.4) -
satisfies the following assertions:
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(1) the equilibrium position e = 0 of system (4.44)—(4.47), (1.17), (4.9)—(4.14) is globally asymptotic-
ally stable;
(2) anon-trivial solution e(f) of system (4.44)—(4.47), (1.17), (4.9)-(4.14) satisfies the estimate

le()] < Boe ™ TVle(to)], e(ty) = ep, 121 By = IRIIS] (4.48)

where o is the positive number defined in relations (4.17), (4.11)-(4.14).

Proof. We first apply a non-singular linear transformation of coordinates of the state space of the
form (2.8)—(2.12)

e, =Se (e=S"'e =Re)
to the NCDS in canonical form (4.43), (2.3), (2.4), bringing it to the form of the NCDS (4.1), (2.15)—(2.19)
é, = Pl(e:_z, t)ex+Ql(e;_l, De,, ety = e, t2¢
The first and second conditions of Lemma 1 hold for the NCDS (4.1), (2.15)—(2.19), so that the
conclusions of that lemma are also true for the system.
It follows from the assertions of Lemma 1, the non-singularity of the transformation of variables

(2.8)-(2.12) and the estimates
lel = |Re,| <|Rl|e,

» e = 1Sel <|Sllel (4.49)

that the assertions of Theorem 1 hold for a NCDS (4.43), (2.3), (2.4) of canonical form, closed by a
control law e, (1.18), (1.17), (4.8)—(4.14) with linear feedback depending on the state e, and also for a
solution e(¢) of the transient equation (in the aforementioned closed-loop system). This completes the
proof of Theorem 1.

4. Finally, let us consider the behaviour of the solution e(f) of the initial NCDS in deviations
(2.1)—(2.7):

, 5 ;.72 A -1
é = Pole ", t)e+Qo(e ,tle,+g.(et), e(ty) = ey 21

closed by the control law ¢, (1.18), (1.17)
» eu = roe

with linear feedback with respect to the state e, and transient equation (in the aforementioned closed-
loop system)

¢ = Pyle L Detglen), e(ty) = e 21 (4.50)
where Py is the matrix-valued function (4.45)-(4.47) and g, is the vector-valued function (3.5)-(2.7).

Theorem 2. Assume that the conditions of Lemma 2 are satisfied, the vector-valued function g, (2.5)
satisfies the estimate (2.6), (2.7), and in the estimate (2.21) for the vector-valued function g,, (2.20) the
coefficients kg.,; (j = 1, 2) (2.22) satisfy inequalities (4.32).

Then the initial NCDS is deviations (2.1)—~(2.7), closed by a control law ¢, (1.18), (1.17), (4.8)—(4.14)
with linear feedback depending on the state e, is stabilizable, so that the following propositions hold
for a solution e(¢) of the transient equation (in the aforementioned closed-loop NCDS) - system (4.50),
(4.45)-(4.47), (1.17), (4.8)-(4.14), (2.5)-(2.7):

(1) the equilibrium position e = 0 of system (4.50), (4.45)—(4.47), (1.17), (4.8)—-(4.14), (2.5)-(2.7) is
a symptotically stable in the large;

(2) the DAS of the equilibrium position e = 0 of system (4.50), (4.45)-(4.47), (1.17), (4.8)-(4.14),
(2.5)-(2.7) is the set

Qo ={eecR:e=Re,e,€Q,,} (4.51)

where Q. is the set (4.33), (4.34);
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(3) the following estimate holds for a non-trivial solution e(¢) of system (4.50), (4.45)—(4.47), (1.17),
(4.8)~(4.14), (2.5)—(2.7).

~Yo(t~ 1)

le(£)l < Bge le(to)

. e(tg) € Q0 124, (4.52)

where

ﬁO = 'R”SL YO = Voao, 0<V0<1

0l is the positive number defined in relations (4.16), (4.11)-(4.14), and Q, is the set (4.51).

Proof. We first apply a non-singular linear transformation of coordinates in the state space of the
type (2.8)-(2.12),

e, =Se (e= S—lex = Re,)

to the initial NCDS is deviations (2.1)—(2.7), to obtain a NCDS (2.13)-(2.22) of special form
6, = Pe L 0e, +01(e e+ g(ent), ety = e 121

In estimate (2.21) for the vector-valued function g, (2.20), the coefficients kg.; (j = 1, 2) (2.22) satisfy
inequalities (4.32).

Since the NCDS of special form (2.13)—(2.22), (4.32) satisfies the conditions of Lemma 2, the conclu-
sions of that lemma hold for this system.

It follows from the assertions of Lemma 1, the non-singularity of the transformation of variables
(2.8)~(2.12) and the estimates (4.49) and (4.32) that the conclusions (analogous to those of Lemma 2)
formulated in Theorem 2 hold for the initial NCDS in deviations (2.1)~(2.7), closed by a control law
e, (1.18), (1.17), (4.8)—-(4.14) with linear feedback depending on the state e, and also for a solution e(¢) of
the transient equation (in the aforementioned closed-loop NCDS) — the system (4.50), (4.45)—(4.47), (1.17),
(4.8)—(4.14), (2.5)-(2.7). This completes the proof of Theorem 2.

5. APPENDIX

The equations of dynamics for an NCDS of the type of an electromechanical system (such as an electro-
mechanical manipulator robot), comprising a slave mechanism (SM), electric drives (ED) based on DC
motors, and with rigid reductors, have the following form [7]

d(dT\ dT oMl _ .. N
[tﬁ(%)_é—q+$] +0.=A0(q)§+by(9,4,1) = Q, 6
Jo+ koo +i, ;' 0, = kyl,, Lis+RI,+k,00 = u

The first equation describes the dynamics of the SM in the form of Lagrange equations of the second
kind and the second and third equations describe the dynamics of the ED. Here g = col(qy, ... , g,s) is
the m-dimensional vector of generalized coordinates ¢y, ... , g,, of the SM, m is the number of degrees
of freedom (mobility) of the SM and 4y(g) is the continuously differentiable symmetric positive-definite
m x m matrix-valued function of kinetic energy T = ¢* Ag(q)q/2 of the SM, where

|Ag(@)| Skye, Vge R” (5.2)
for some constant 0 < k4o < oo; analogous estimates hold for the partial derivatives of its elements;
agi(q) (i,j = 1, ..., m) are scalar functions of their arguments;

. . 179(g*Ag(9)9)
bo(4.4,1) = Ao(@)d~5| —50 |+ Cn+ L. (5.3)
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0n = 0n(@ = [52]" = col(@ni(a1). -+ Orun()

54)

Oni(g) = ag—;?), i=1,....m
I0n(9)| Skor, Vge R” (5.5)
Qc = Qc(q’ q’ t) = @c(q, t)q (56)

QO is the m-dimensional vector of potential forces driving the SM, I1 = TI(g) is the potential energy
of the SM, Op;(g;) are continuously differentiable functions, kQH 2 (is a constant, Q. is the m-dimensional
vector of generalized forces (torques) of resistance acting on the degree of mobility of the SM,

O.(q,t) = (B.(q, 1) + @*(q, 1))/2 is a continuously differentiable, symmetric, positive-definite m x m
matrix-valued function, I, is the m-dimensional vector of currents in the armature circuits of the DC
motors, u = col(uy, .. um) is the m-dimensional vector of controls — controlling voltages applied to
the armature circuits of the DC motors, Q, = col(Q,1, --. , Qun) is the m-dimensional vector of
generalized forces (torques) applied to the degrees of mobility of the SM, J, ko, ks, L, R, k, are the
diagonal matrices of electromechanical parameters of the DC motors, which are positive real quantities,
i, and n, are the diagonal matrices of transfer coefficients and coefficients of useful action of the
reductors and o = i,g, where o is the m-vector of angles of rotation of the shafts of the motors.

The equations of motlon of an NCDS of type (5.1)—(5.6), written in terms of deviations e and e, (1.4),
are

€ =22, < col(el,ez, e3), z = col(qg, g, ]a), Z, = COl(qp, qp, Iap)
(e1=9-9pe;=4-qpe3=1,-1,), z,€Q,

5.7
= {z,=col(q, 4, )€ " q,e R". §,€ R", I,,€ R"™; G-7

|9,(D)] S kpap <o,

L, () Sky,<o0; t28); e,=u-u,

The deviations are measured from their programmed values z, and u, (where 0 < k,p, < o0, 0< k3,
are constants), represented in the form of system (1.5)—(1.10) with n = 3m,r = 3 and

Fo(e',t) = 4—d, = g.(e', 1) + Popp(t)e,

(8e1(e', 1) = 0, Poia(t) = A\(NBy = I,, Ay(8) = B, = I,,)

Fo(e’, 1) = A7 (@)l - (g, 4, 1))~ A7 (8,) (kyylop = (4, 4 1) =

= g.(e" 1) + Pops(e, ey

gea(e’, 1) = AT (@) kyl - b(q, 4, 1))~ A7 (q,)kpy Loy = b(ap 4o ) =

= [A7 (@) - AT (@)= b(gp dp )+ kyyl,,) ~ AT (@) A(ey, €5, 1) =

= AA(ey, )(=b(dp 4, 1) + kpgl,,) — A7 (@)Db(ey, ey, 1)

(e, n) = AN -4a7g,) = A e +a) -4 g, g=ei+a, 5:8)
Pos(eh, 1) = Ag(e', )B, = (Ui, + Ag(@)) Mi ky = A (@ky

. -1 .
Ayel, 1) = (Jigh, +Ag(@) . By = Myiyky
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Fyle,e,1) = L™ (e, RU, - 1,,) ~k,ip(d—4,)) = 8es(€’ 1) + Posa(e’, e,

ges(€’s 1) = ~LT\(R(I,~ 1) +k,i (4= 4,))

Pou(eh, 1) = A2 )By = L', Ay, =L", By=1,

A@) = Ji,+ i, Ag(g) = ip M, (Jipn, + Ay(@))

b(g, 4, 1) = koipd+i, M, bo(g, 4 )
Here

|AA (e, 1) Skasley|, Ve e R™, 121, (5.9)

where 0 < k,4 < o is a constant; analogous estimates hold for the partial derivatives of its elements:

Aa; (e, 1) (i,j = 1, ... , m) are scalar functions of their arguments, Ay(e', t) is a symmetric, positive-
definite matrix-valued function:

AQp(ey, t) = Qple, + q,,) - Qn(qp)

|AQn(er, B)| Skagnles|, Ve, € R", 124, (5.10)
kaon = 0 is a certain constant;
AQ (e, ext) = 0(q,4, )~ Q4 4y t) =
= 0.(9,1)4-0.(q,, 14, = O (e, +q, ey +AB (e}, 1),
AO (e}, 1) = O (e, +4,, 1)~ 0.(q, 1) (5.11)
|AQc(e1, ey t) < kAch’e1| + kAch|e2|, Ve,, e, € R", 12 ty
kage1 2 0, kaper > 0 are certain constants, and
Ab(e, ey t) = b(q, 4, t) - b(qp, q'p, t) = koip(q’ - qp) +
+'0 (bo(4, 4 1) = Byl G 1)) = Kgipes + i My Abg(ey, €5, 1) (5-12)
Abg(ey, ey, 1) = bole; +qp €5+ G, 1) = bo(q 4 1) (5.13)
Taking relations (5.1)~(5.3) into account, we obtain the following estimates
|Ab(ey, e, )| < kppley] + kapales] + kAb22|eZ|2
|Abg(ey, €3, )] < kapoiler] + kaporler] + kaponales|” (5.14)

Ve, e, R”, t21,

where kpp 2 0, kapzy > 0, kppo; 2 0, kppopy > 0 are constants.
It follows from relations (5.1)—(5.14) that relations (1.11)—(1.15) hold, and consequently the NCDS
(1.5)—(5.14) is a NCDS of the form (1.5)-(1.14).

Example. Consider an electromechanical robot whose SM is a three-dimensional two-stage manipu-
lator [7] whose kinematic diagram is shown in Fig. 1. Here g; and g,, the generalized coordinates of
the SM, are the angles formed by the corresponding limbs — the degrees of mobility of the SM — with
the axes of a fixed Cartesian system of coordinate Oxyz, [; and m; are the length and mass of the ith
limb; ry is the radius of the shaft-hinge of the first limb — a homogeneous cylinder; r, is the distance of
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the centre of gravity of the second limb (allowing for the mass m of the load in its gripping device)
from its axis of rotation; Q,; is the torque of the load of the ith limb of the SM,i = 1,2 and m = 2 is
the number of degrees of freedom (mobility) of the SM.

In the equations of the dynamics of the SM of such a robot (see the first equation of system (5.1)
and relations (5.3), (5.4) and (5.6)),

Ag(q) = diag(2J, + mygrasin’ gy, myyrs) (5.15)

is the 2 x 2 diagonal matrix of the kinetic energy of the SM, where Jy; = myr3/2 is the moment of inertia
of the first limb of the SM about its longitudinal axis of rotation, m,, = m, + my,

I1(q,) = mygry(1-cosg,) (5.16)
is the potential energy of the SM, where g is the gravitational acceleration, and
O, = diag(kgyy, kgrp) (5.17)

is a 2 x 2 diagonal matrix, where kgr; > 0 (i = 1, 2) are the damping factors (viscous friction).

It can be proved that the estimates (5.2), (5.5), (5.9)-(5.14) hold for a robot of this description, whose
equations of dynamics have the form (5.1)(5.3), (5.7), (5.8), (5.15)—(5.17). It follows that relations
(1.10)—(1.15) hold, and hence that the NCDS (5.1)—(5.3), (5.7), (5.8), (5.15)—(5.17) is of the form (1.1),
(1.5)-(1.15).
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